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Summary of Completed Project

This project involved the study of the control and dynamics of various physical
and engineering systems.

The Principal Investigator analyzed the stability of mechanical systems in the
presence of dissipation, as well as the stabilization of mechanical systems by using
nonlinear controls. He studied in particular a method of control that involves match-
ing a feedback controlled system by an autonomous controlled Lagrangian system by
adjusting parameters. He analyzed control of satellite dynamics by this method. He
studied the geometry, control and stabilization of systems with nonholonomic con-
straints — systems such as wheeled vehicles or contour following robots. He derived
an energy-based method for analyzing such nonholonomic systems, even in the case
when the system has natural dissipation. He also studied the role of conservation
laws in nonholonomic systems. He studied optimal control problems and, in partic-
ular, solvable optimal control problems, and derived a novel form of the equations
for the rigid body using the optimal control approach. These equations were linked
with discrete rigid body equations and numerical analysis. He also worked on the
stabilization of systems with complex dynamics arising in anti-corrosion processes.
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1 Technical Information.

In work with J. Marsden and G. Sanchez (Bloch, Marsden and Sanchez [1997]) and
more recently with N. Leonard (Bloch, Leonard and Marsden [1997, 1998, 1998a]), I
analyed a technique for stabilizing nonlinear systems using the notion of controlled
Lagrangian. The procedure is as follows: we are given a mechanical system with
symmetry and a relative equilibrium that we wish to stabilize. Examples include
a spacecraft with momentum wheels or a pendulum on a cart. We then construct
a new Lagrangian that we call L,,, which describes the closed loop behavior of
the controlled system, but which still preserves a modified energy and momentum.
Various parameters are adjusted, in particular the kinetic energy metric, in order
to ensure the controlled Lagrangian matches the real physical system. Since energy
and momentum are preserved, we are able to use the energy-momentum method to
analyze stability.

For example, the Lagrangian for a free spacecraft rotor system is of the form
L =1/2(Mw? + dow? + Liw? + J3(ws + ¢)?).

We designed a controlled Lagrangian of the form

L-r,a,p = 1/2(/\10)% -+ Ag&)? + 13w§ + pJ3((1 -+ T)LL)3 + 0)2) + J30'T2Q§) .

A suitable choice of parameters matches the equations of the controlled Lagrangian
with the equations of the physical controlled system. Further, these equations are still
Hamiltonian and preserve a momentum iike quantity. Thus by adjusting the control
parameters we can use energy methods to achieve stabilization results.

One general class of Lagrangian system that we showed we can stabilize with this
technique (the spherical pendulum on a cart and the nonlinear pendulum are special
cases) is of the following form:

Locally, we write coordinates for our configuration space Q as z°, §° where z%, o =
1,...n are coordinates on the shape space Q/G for G an Abelian group, and where
#°,a = 1,...,r are coordinates for the group. For the uncontrolled system, the
variables 6% will be cyclic coordinates in the classical sense. We write the given
Lagrangian in these coordinates (with the summation convention in force) as

. 1 . ..
L(z®,1%,6°, 6% = Egaﬁf%" + 0aal®0® + %ga,ﬁ“&b - V(z). (1.1)

We now introduce a shift in corresponding velocity variables by a 1-form 7 =
Taal®. :
The controlled Lagrangian is then
ca A : 1 o
L., = L(z% 2% 6%+ 752%) + Eaangrﬂbz“xB (1.2)

We can then show that a system with suitable controls in the @ variables can be
modeled by this autonomous Lagrangian. Interestingly, the structure of the controls
mirrors the structure of the system inertia matrix.
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With my student Lum (Lum and Bloch [1997], 1998]) I analyzed the control and
numerics of satellite dynamics in the so-called Serret-Andoyer variables. We showed
our methods were advantageous both in simplifying the theoretical analysis and in
reducing computational work. With another student Rui and N. McClamroch we
derived controls for orienting coupled rigid bodies.

With Marsden, Zenkov and Murray I studied the geometry and dynamics of me-
chanical systems with nonholonomic constraints. Such constraints arise in many
important mechanical systems including robotic systems. The resulting equations
are not variational in nature but arise from the Lagrange D’Alembert formalism. In
many cases the equations of motion are of the form

a 6_L_ B BL. oL Ber .j
dt \ ort ort ds®
where L. is the Lagrangian with the constraints substituted and the B’s are curvature

terms. Given a symmetry in the problem and defining the nonholonomic momentum
map to be J§ = 8q‘ ({Q) we showed one gets generalized conservation laws of the

form.
dJf oL [ ( Eq)]'
dt 8q 0

Here EZ? is the infinitesimal generator of the symmetry group and &9 is a configura-
tion dependent Lie algebra element that measures how the distribution defined by the
constraints and the group orbit interact. This nonholonomic momentum map gives
a rather beautiful generalization of Noether’s theorem to the nonholonomic context.
It indicates that in some cases one obtains conservation laws as in the Hamiltonian
case, but in other cases one obtains a dynamic momentum equation which is in fact
kev to many aspects of the dynamic behavior of the system.

With J. Marsden and my student D. Zenkov ([1998]), I analyzed the stability
properties of such systems. In particular we have formulated an energy momentum
approach to the analysis of such systems, i.e. we showed we could find a Lyapunov
function of the form V = E + & where E is the energy and & is another conserved
quantity. In view of the nontrivial nature of the momentum equation, ® is not the
momentum in general but a quantity which arises more subtly from the analysis of
the momentum equation. In some cases one can get asymptotic stability, even in
the absence of external dissipation. An example that exhibits the latter behavior is
the so-called rattleback top, while the rolling disc or penny exhibits stability but not
asymptotic stability.

We showed it was useful to divide the energy momentum analysis into three cases
which exhibit rather different dynamic behavior:

1. Pure Transport Case In this case, terms quadratic in internal (shape)

variables are not present in the momentum equation, so it is in the form of a trans-
port equation. Under certain integrability conditions the transport equation defines
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invariant surfaces (not momentum level sets), which allowed us to use a type of
energy-momentum method for stability analysis in a similar fashion to the holonomic
case. In this case one gets stable, but not asymptotically stable, relative equilibria.
Examples include the rolling disk, a body of revolution rolling on a horizontal plane
and Routh’s problem.

2. Integrable Transport Case In this case terms quadratic in the shape vari-
ables are present in the momentum equation but the transport part is integrable.
Then the relative equilibria may be asymptotically stable. We were able to find a
generalization of the energy-momentum method which gives conditions for asymp-
totic stability. An example is the so-called roller racer (two connected carts on the
plane).

3. Nonintegrable Transport Case Again quadratic terms are present in
the momentum equation but the transport part is not integrable. We were able to
demonstrate asymptotic stability under certain eigenvalue hypotheses. An example
is the rattleback top.

An instructive example which exhibits dissipative behavior is the Lagrangian on
TR® of the form

L(r',r% s, 7,72 8) = %{(1—[a(r1)]2)(7‘1)2—2a(r1)b(r1)7‘1?‘2+(1-—[b(rl)]2)(r'2)2+éz}—V(rl)

where a,b, and V' are given real valued functions of a single variable and with the
nonholonomic constraint § = a(r!)r! + b(r')72. By constructing a suitable Lyapunov
function we can show tnis system has an equilibrium which is asymptotically stable
in certain directions even though energy is preserved.

In our recent paper, Bloch and Crouch [1998], we investigated the structure of
the connections describing nonholonomic systems on Riemannian manifolds and the
relationship of the flows with conserved integrals.

With Drakunov (see e.g. Bloch and Drakunov [1996], [1998]), I studyed stabi-
lization of nonholonomic control systems by nonsmooth feedback (such systems are
never smoothly stabilizable). Using sliding mode type techniques we have been able
to design a stabilizer for Brockett’s fundamental example (the Heisenberg system)
with equations T =u, y =v, 2 = zv — yu.

We designed a series of control laws for this system, for example, u = —z +
ysign(z), v = —y — zsign(z). We showed that with this feedback the condition for
the system to be stabilized is 1/2[z%(0) + y?(0)] > |2(0)]. This is a paraboloid in the
phase space, but within the paraboloid we showed that one can use constant feedback
to emerge from the paraboloid, thus giving a globally stabilizing controller.

We have extended this analysis to systems in the canonical form of Brockett (see
Bloch and Drakunov {1998])

B
I
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where z is a vector and Y is a skew symmetric matrix. For this we use a hybrid
control.

Moreover (see Bloch, Drakunov and Kinyon [1997], [1998]) we were able to extend
these ideas to a Lie algebraic generalization of this system. The general approach
involves reduction of this high order system to a low order one and uses symmetries
of the controlled vector fields. Recently we have developed an approach based on
switching between isospectral matrix flows and gradient-like double bracket flows.
This gives a new method for stabilizing a large class of mechanical systems with
constraints.

The general system we studied can be described as follows. Let g be a Lie algebra.
Assume g has a direct sum decomposition g = m + h such that § is a Lie subalgebra,
[h,m] C m, and [m, m] = . We consider the following system in g:

T = u (1.3
Y [u, 7] (1.4

where z,uem, Y €bh.
This is a canonical form for a large class of systems of interest and has many
applications. The key controls we consider are given by

u = —az + Y, 1] - 1Y, [Y; ] (1)

where a, 3,7 : g — R are real-valued ad h-invariant functions

The idea of the control is to switch between having o nonzero and  zero and
vice versa. This alternately drives z or Y downward while the other set of variables
evolves isospectrally. In fact one alternates between Lax type equations and a kind
of double bracket equation of the type used in optimization problems. Our strategy
for control here is a rather nice combination of our work on optimization (double
bracket equations), integrable systems (isospectral flows) and our previous work on
nonholonomic systems.

With P. Crouch and R. Brockett I have been studying explicit solutions to a
number of other optimal control problems of interest — see Bloch and Crouch [1996a]
{1997} and Bloch, Brockett and Crouch [1997]. These control problems yield equations
of motion which are explicitly solvable - giving for example the equation of motion
of the rigid body equations and the Toda lattice. In some cases we have shown that
they take the coupled double double bracket form:

Q = [@J7PQ]

P = [P,J'PQ]. (1.6)

These equations in fact represent the geodesic flow on an adjoint orbit of a compact
Lie group with respect to a right invariant metric.
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Unlike the double bracket equation L = [L,[L, N]] which is gradient and useful
for solving discrete optimization problems, the double double bracket equations are
Hamiltonian and useful for certain optimal control problems. Further, this approach
sheds light on the problem of explicitly solving certain classical problems in dynamics:

The equations discussed above are also well defined on the complex and real
Grassmannians of g-planes in n + 1-space Ggn41(C) or G4 pn+1(R). This may be seen
as follows:

We represent a point in the complex (real) Grassmannian by a matrix

0= [EQ. OQ] (17)

in m where @ is a complex (real) p x ¢ matrix of full rank and @Q* is its Hermitian
conjugate (transpose). Then geodesic equations on the real or complex Grassmannian
take exactly the same form as in 1.6 but where @ is replaced by @ and similarly for
P. '

We were able to use formalism developed here together with the work of Thimm to
give a very explicit proof of complete integrability of the geodesic flow on symmetric
spaces such as the real and complex Grassmannians.

Interestingly, as a special case of this approach we were able to derive a new
symmetric form of the classical rigid body equations.

The equations are of the form:

Q = QQ
P = QP (1.8)

where @ is the configuration matrix of the body and Q = J~}(QPT — PQT) is the
angular velocity.

We were able to relate these equations (see Bloch, Crouch, Marsden and Ratiu
(1998]) to the discrete rigid body equations of Moser and Veselov and hence begin
work on a new numerical algorithms for rigid bodies.

In Bloch and Crouch [1998b] we analyzed the structure of interconnected systems
including electrical circuits.

With Alan Markworth (Markworth and Bloch [1996, 1996a]) I examined the con-
trol of systems associated with anti-corrosion processes. The free system contains, in
general, rather complex behavior such as periodic orbits or chaotic attractors. We
were able to stabilize this system using classical control methods as well as more
modern methods based on my work with Marsden on stabilizing nonlinear systems
with homoclinic or heteroclinic orbits.

With N. McClamroch and a student Rui [1997] we considered stability of a satel-
lite with robot arm and momentum wheel. Numerics were done using the ADAMS
software from Mechanical Dynamics.
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Executive Summary
Personnel Supported, Theses Arising, Publications

Personnel Supported:

Students K. Lum, D. Zenkov and postdoc M.Gekhtman.

Theses Supervised:

K. Lum: Control of the Rigid Body and Dynamics with Symmetry. Ph.D Disser-
tation, Aerospace Engineering, The University of Michigan.

Contains: work on global stabilization of spinning top with mass imbalance, adap-
tive virtual autobalancing of rotor with mass balance, Serret-Andoyer transformation
of variables for the controlled rigid body, reduction of full system on T*SO(3), proof
of stabilization of the rigid body using a rotor, geometric approach to output feedback
regulation. ‘

D. Zenkov: Integrablity and Stability of Nonholonomic Systems, Ph.D Disserta-
tion, Department of Mathematics, The Ohio State University.

Contains: Analysis of the Routh Problem of a rigid body rolling on a surface of
revolution, proof that this problem is completely integrable, nonlinear conditions for
stability of motion, energy momentum approach extended to nonholonomic systems
including those with internal dissipation, i.e. demonstration we can find a Lyapunov
function of the form V = E + ® where E is the energy and ® is another conserved
quantity, ® shown not to be the momentum in general but a quantity which arises
from the analysis of the dynamic momentum equation, applications to the coupled
wheeled vehicles and the rattleback top.

More details in the publications below and in the technical write-up above.
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